Model Selection for Support Vector Classifiers via Direct Simplex Search

نویسندگان

  • Gilles Cohen
  • Patrick Ruch
  • Melanie Hilario
چکیده

This paper addresses the problem of tuning hyperparameters in support vector machine modeling. A Direct Simplex Search (DSS) method, which seeks to evolve hyperparameter values using an empirical error estimate as steering criterion, is proposed and experimentally evaluated on real-world datasets. DSS is a robust hill climbing scheme, a popular derivative-free optimization method, suitable for low-dimensional optimization problems for which the computation of the derivatives is impossible or difficult. Our experiments show that DSS attains performance levels equivalent to that of GS while dividing computational cost by a minimum factor of 4.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SVM Modeling via a Hybrid Genetic Strategy. A Health Care Application

This paper addresses the model selection problem for Support Vector Machines. A hybrid genetic algorithm guided by Direct Simplex Search to evolves hyperparameter values using an empirical error estimate as a steering criterion. This approach is specificaly tailored and experimentally evaluated on a health care problem which involves discriminating 11 % nosocomially infected patients from 89 % ...

متن کامل

Support Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran

Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...

متن کامل

Application of ensemble learning techniques to model the atmospheric concentration of SO2

In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...

متن کامل

A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES

Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only  considers both accuracy and generalization criteria in a single objective fu...

متن کامل

Support Vector Regression Using Mahalanobis Kernels

In our previous work we have shown that Mahalanobis kernels are useful for support vector classifiers both from generalization ability and model selection speed. In this paper we propose using Mahalanobis kernels for function approximation. We determine the covariance matrix for the Mahalanobis kernel using all the training data. Model selection is done by line search. Namely, first the margin ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005