Model Selection for Support Vector Classifiers via Direct Simplex Search
نویسندگان
چکیده
This paper addresses the problem of tuning hyperparameters in support vector machine modeling. A Direct Simplex Search (DSS) method, which seeks to evolve hyperparameter values using an empirical error estimate as steering criterion, is proposed and experimentally evaluated on real-world datasets. DSS is a robust hill climbing scheme, a popular derivative-free optimization method, suitable for low-dimensional optimization problems for which the computation of the derivatives is impossible or difficult. Our experiments show that DSS attains performance levels equivalent to that of GS while dividing computational cost by a minimum factor of 4.
منابع مشابه
SVM Modeling via a Hybrid Genetic Strategy. A Health Care Application
This paper addresses the model selection problem for Support Vector Machines. A hybrid genetic algorithm guided by Direct Simplex Search to evolves hyperparameter values using an empirical error estimate as a steering criterion. This approach is specificaly tailored and experimentally evaluated on a health care problem which involves discriminating 11 % nosocomially infected patients from 89 % ...
متن کاملSupport Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملA QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملSupport Vector Regression Using Mahalanobis Kernels
In our previous work we have shown that Mahalanobis kernels are useful for support vector classifiers both from generalization ability and model selection speed. In this paper we propose using Mahalanobis kernels for function approximation. We determine the covariance matrix for the Mahalanobis kernel using all the training data. Model selection is done by line search. Namely, first the margin ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005